丁石孙,1927年生。著名数学家,专于代数、数论。在代数、数论、应用代数、李代数理论的研究方面取得多项成果。
数学的作用不局限于它是一门知识,更不仅仅是工具。哪个学科一旦与数学的某个问题挂上了钩,往往就能得到一个飞跃的发展。这方面的例子很多,比如,80年代Hauptmann得了诺贝尔化学奖,他解决的是如何用X光确定晶体结构的问题,主要靠的就是数学。获得诺贝尔化学奖以后,他跟人讲,我的化学水平就是大学念了半年的普通化学。这很值得我们深思。数学往往能够对不同的学科起作用,但对什么学科起作用,以什么样的方式起作用,并不是我们事先能够预料的。
从科学发展来看,数学和许多学科都发生过密切的关系,数学的发展和许多学科的发展都起着很相辅相成的作用——就是或者说数学的发展促进了其他学科的发展,或者其他学科向数学提出了许多具体的问题,结果也推动了数学的发展。比如,最早提出博弈论的是冯·诺依曼。二次世界大战时,德国的空军很强,飞机数量多,质量也好。为了解决如何以处于劣势的美国空军打败德国空军的问题,美国就找了一批数学家,冯·诺依曼就在其中。他是个大数学家,结果就是他从这个问题里发展出了博弈论。
关于数学的地位,有的人提出这样一种说法,认为数学是科学的王后。这个说法很多数学家不赞成。数学并不是孤立于其他学科而高高在上的,而是和其他学科相辅相成,共同促进,共同发展。把数学与其他学科的关系说成是伙伴关系,也许更恰当一些。
我们现在说的数学的定义是恩格斯在《自然辩证法》中提出来的。他说,数学是研究客观世界的数量关系和空间形式的。恩格斯这个定义是19世纪提的,随着20世纪数学的发展,很多东西这个定义解决不了。说到数量关系,就是指数学研究数的运算。但随着数学的发展,数学运算的对象远远超出了数。空间形式是指当时被理解为客观世界的空间形式,也就是我们所说的三维空间。但是,几何学里的研究已经远远超出了三维,涉及到四维、五维、多维甚至无数维。所以拿19世纪的定义来概括数学就显得很不够。
解放后,我参加了很多次讨论,就是如何给数学下定义。到现在为止,我觉得没有一个定义是让人满意的。这也说明数学的定义很难下。比如有人提出来,数学是研究“量”的,把“数”字去掉。他说,有“数”呢,就显得太死了。那什么叫“量”呢?我给提出这个概念的人说过,你说的“量”是一个哲学概念。现在又有人说数学研究的是秩序,也就是说,数学的研究就是给这个世界以秩序。想想这种说法也有点道理,但说的还是不大清楚。从这里可以看出一条,数学与其他自然科学和社会科学不一样,因为数学的研究对象是抽象的。而那些学科都有非常具体的对象,但数学没有。数学所以能用到自然科学,又能用到社会科学,甚至人文学科,就是因为它是抽象的。数学研究对象的抽象性首先有一条,就是能够训练我们一种思维方法——抽象思维方法。数学里即使是从自然数开始,也已经是非常抽象的概念了,要经过很多层抽象才能够得出来。你要研究数学发展史,就会发现数的概念的形成其实是很不容易的。所以,学数学可以训练人的抽象思维能力。